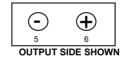


SF Series High Voltage Power Supply

General Description

The SF Series high voltage power supplies are regulated high voltage power supplies. They provide outputs of up 10kV and power levels to 15 Watts. The output of each power supply is floating with respect to the input line. This allows either polarity to be configured. The output voltage of the SF may be varied either with the unit trimpot, an external trimpot, or via an external control signal. The output ripple is typically less than 1% at full power. Each power supply may be programmed down to 30% of the maximum output voltage. All SF models offer 0.1% line regulation and 3% maximum half load to full load regulation. All SF's are reverse input voltage and short circuit protected.

Features


Regulated Output Encapsulated 100 VDC to 10,000 VDC models available 10 Watt and 15 Watt power 28 VDC input Trimpot, Resistance or Voltage program

Connection Diagram

Pins:

- \circ
 - INPUT SIDE SHOWN
- 1. Ground
- 2. +5.0V Reference
- 3. Vcontrol
- 4. +28 VDC input

INPUT SIDE SHOWN

Pins:

- 5. HV output
- 6. +HV output

Available Models: (Vin = 28 VDC standard (other input voltages available12,15,24, and 48V)):

10 Watt Models:

Name	Maximum Output Voltage	Maximum Output Current	1st Year
SF - 1V	100	100 mA	2003
SF - 2V	200	50 mA	1999
SF - 6 V	600	16.67 mA	1991
SF - 12 V	1,250	8 mA	1986
SF - 25V	2,500	4 mA	1983
SF- 50V	5,000	2 mA	1984
SF-100V	10,000	1 mA	1992

Available Models: Vin = 28 VDC standard (other input voltages available 12,15,24, and 48V)):

15 Watt Models:

Name	Maximum Output Voltage	Maximum Output Current	1st Year
SF - 1	100	150 mA	2000
SF - 2	200	75 mA	1993
SF - 6	600	25 mA	1990
SF - 12	1,250	12 mA	1989
SF - 25	2,500	6 mA	1985
SF- 50	5,000	3 mA	1985

Electrical Characteristics

(at 25 degrees C unless otherwise specified)

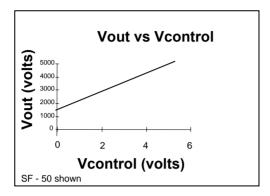
Parameter	Conditions		Value		Units
		Min	Typical	Max	
Supply Voltage*:	(all power models)	25VDC	28VDC	31 VDC	VDC
Input Current:	No Load: (10 W models) No Load: (15 W models)	150 160	160 175	175 185	mA mA
	Full Load: (10 W models) Full Load: (15 W models)	550 850	600 900	650 950	mA mA
Output Ripple:	No Load (all models): Full Load (all models):	0.7% 0.8%	0.7% 0.8%	1% 1%	Vpp Vpp
Load Regulation:	Half Load to Full Load		3%		VNL/VL
Output Linearity	No Load		1%		Δ V OUT Δ V OUT (i
Output Linearity	Full Load (all models):		1%		Δ V ουτ Δ V ουτ (ι
Short Circuit Current:	10 Watt Models: 15 Watt Models:		250 350	350 450	mA mA
Power Efficiency:	Full Load (10 W) Full Load (15W):		60% 60%		Pout /Pir
Reverse Input Polarity	Protected to 50 VDC				
Temperature Drift:	No Load Full Load			200 200	ppm/De ppm/De
Thermal Rise:	No Load (case) (15W) Full Load (case) (15W)			25 45	degrees degrees
Slew Rate (10% - 90%)	No Load Full Load			100 120	mS mS
Slew Rate (90% - 10%)	No Load Full Load			300 200	mS mS
Drain Out Time	No Load (5 TC)			150	mS

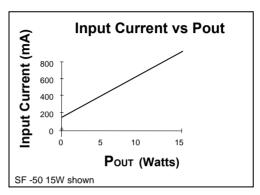
^{*} Other input voltages available: 15VDC, 24VDC, 28VDC and 48VDC

Physical Characteristics

(at 25 degrees C unless otherwise specified)

Parameter	Conditions	Value	Units
Dimensions	MKS English	50.8 W x 101.6L x 20.6 H 2.0 W x 4.0 L x 0.81 H	mm inches
Volume:	MKS English	105 6.4	cm ³ inch ³
Mass:	MKS English	156 5.6	grams oz
Packaging:	Black anodized aluminum case with RTV elastomer encapsulation		
Finish	Smooth arushed aluminum		
Terminations:	Input and control: Teflon terminals (4) HV Output: Teflon terminals (2)		


Environmental Characteristics


(at 25 degrees C unless otherwise specified)

Parameter	Conditions	Value	Units
Temperature Range	case temperature	-40 degrees to + 71 degrees -40 degrees to + 160 degrees	Celsius Fahrenheit
Shock:	MIL-STD-810 Method 516	40 g's	Proc IV
Altitude:	pins sealed against corona pins sealed against corona	-350 to + 16,700 -1,000 to +55,000	meters feet
Vibrations:	MIL-STD-810 Method 514	20 g's	Curve E
Thermal Shock	MIL-STD-810 Method 504	-40 deg C to + 71 deg C	Class 2

SF Series Performance Charts

SF Series Application Notes

The SF Series high voltage power supplies are powered by an input voltage of 28 VDC. They can be adjusted to provide a set output voltage or they can be controlled either by an external resistance or an external voltage. By connecting the Vcontrol pin to the +5.0 volt reference pin the maximum output voltage of the power supply is obtained and is adjustable via the trimpot located on the top of the power supply. Reductions in output voltage to 30% of maximum are possible by this method. This is shown in Figure 1 below. The maximum voltage is fixed by the model and is a regulated output. In this configuration, the output voltage will not vary with input line fluctuations or output load changes up to the maximum power rating for the power supply. For standard 28 VDC input models, the input line may vary from 25 VDC to 31 VDC and the output voltage will remain regulated within 0.01%. Standard output loads may be as high as 15 Watts of power (for 15 Watt models). The input AC bypass capacitor C1 is optional and is utilized to prevent switching spikes from riding back on the input power lines. Values of 0.1 uF to 10 uF are commonly used.

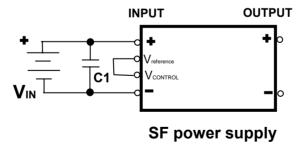


Figure 1: Basic SF hookup schematic for maximum output

The output voltage of the SF unit may be programmed from an external voltage. It may be reduced in magnitude by placing a voltage lower than the +5.0 volt reference voltage onto the Vcontrol pin (Pin 3). By placing a voltage of +2.5 VDC onto the control voltage pin the output will be reduced in half. Figure 2 details a simple method of using an external voltage source to vary the output voltage of the SF power supply. Typical values of input impedance for the SF are 5K Ohms. This makes programming via a DAC or operational amplifier an easy chore for the SF power supply. The control voltage is referenced to the input ground. There is no connection between the input ground and output HV return in all SF power supplies.

SF Series Application Notes (continued)

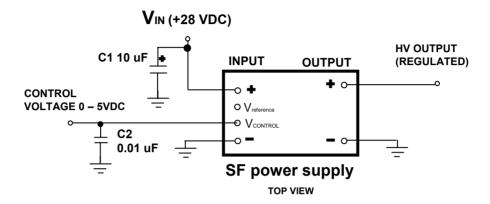
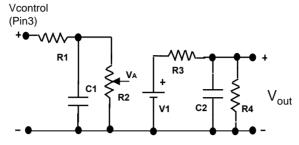


Figure 2: Voltage programming

Capacitor C1 removes switching spikes from the input line and C2 is an AC bypass to insure smooth voltage control levels.

The SF power supply may also be programmed by using a simple trimpot and the internal +5.0 volt reference. Figure 3 shows this topology. Because the input impedance of the control voltage pin is 5K Ohms, the output of the SF may be controlled between minimum and maximum values using the formulas given. The output in both configurations can always be lowered or adjusted via the internal trimpot located on the top surface of the power supply.

VIN (+28 VDC) C1 10 uF **HV OUTPUT INPUT OUTPUT** (REGULATED) O VCONTROL SF power supply **TOP VIEW** Vmax C2 5K 0.01 uF ---- VmaxSF R1 + 5KVmin = ----- VmaxSF


Figure 3: Resistance Programming

R1 + R2 + 5K

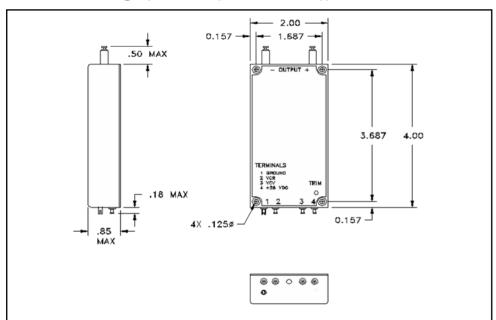
Note: R2 is internal trimpot accessible via top of power supply

Equivalent SF Circuit Model

Equivalent SF HVPS Circuit Model

R1 = 100 OhmsR2 = 5K Ohms (timpot)

R3 = $(15 \times \text{Vout}_{\text{max}})$ Ohms R4 = $(4 \times \text{Vout}_{\text{max}}^2)$ Ohms C1 = (0.1×10^{-6}) Farads


C2 = $(0.0075 \times lout_{max} / Vout_{max})$ Farads V1 = $(VA \times Vout_{max} / 5.0)$ Volts

For example, for an SF - 50 10W:

Voutmax = 5000 VPoutmax = 10 W loutmax = 0.002 AR1 = 100 OhmsR2 = 5K OhmsR3 = 75K Ohms

R4 = 100 Megohm C1 = 0.1 uFC2 = 0.003 uF

Outline Drawing: (inches (millimeters))

Ordering Information:

SF - XXV* / Z

XX = Output voltage

Z = Input voltage (blank if 28VDC)

* = Remove V for 15 Watt units

Example:

SF - 50V: Maximum output = 5,000 V 10 Watts 28 VDC input SF - 50 : Maximum output = 5,000 V 15 Watts 28 VDC input