

HAQ Series High Temperature High Voltage Power Supply

General Description

The HAQ Series high voltage power supplies are designed specifically for use in high temperature environments. They provide isolated outputs of up 3kV and will operate at 185 degrees C case temperature. The output voltage of the HAQ power supply is directly proportional to the input voltage (0 - 15VDC). The output ripple is typically less than 0.1% at full power load. The two output leads are floating and fully isolated from the input power leads by over 1T Ohm (@ 25 deg C) with less than 50 pF of coupling capacitance. This permits either positive or negative polarity operation. The circuitry incorporates the same high efficiency Royer oscillator designed for our H-25B series which has been in production since 1981. All HAQ's are reverse input voltage and short circuit protected.

Features

- Output proportional to Input
- Encapsulated
- 500 VDC to 3,000 VDC available
- 1.5 Watt power
- Metal case for low ripple: 0.1% Vpp

Connection I	Diagram		
RED: Inp BLACK: Inp ORANGE: Out BROWN: Out GREEN: Cas	ut +15VDC ut return put + put – e		
Available Mo 1.5 Watt Mod Name	dels: els: Maximum Output Voltage	Maximum Output Current	1 st Year
 HAO - 5	500 VDC	 3 mA	2008
		4	2000

www.ahv.com

Electrical Characteristics

(at 25 degrees C unless otherwise specified)

Parameter	Conditions		Value		Units
		Min	Typical	Max	
Supply Voltage:	(all models)	2 VDC	15VDC	18 VDC	VDC
Input Current:	No Load:	25	30	35	mA
	Full Load (1.5W):	190	195	210	mA
Output Ripple (max):	No Load (all models): Full Load (all models):	0.1 % 0.1 %	0.1 % 0.1 %	0.1 % 0.1 %	Vрр Vрр
Load Regulation:	No Load to Full Load	25%	30%	35%	VNL/VL
Output Linearity	No Load		1%		ΔVουτ
					ΔVOUT (ideal)
Output Linearity	Full Load (all models):		1%		ΔVουτ
					ΔVOUT (Ideal)
Short Circuit Current:	Input Current:		250	300	mA
Power Efficiency:	Full Load	45%	50%	55%	Ρουτ
					Pin
Reverse Input Polarity	Protected to 20 VDC				
Max Temperature Drift:	No Load Full Load			600 600	ppm/DegC ppm/Deg C
Thermal Rise:	No Load (case) Full Load (case)			3 5	degrees C degrees C
Slew Rate (10% - 90%)	No Load Full Load			100 120	mS mS
Slew Rate (90% - 10%)	No Load Full Load			200 100	mS mS
Drain Out Time	No Load (5 TC)			100	mS

Physical Characteristics

(at 25 degrees C unless otherwise specified)

Parameter	Conditions	Value	Units
Dimensions	MKS English	25.4 Diameter x 57.15 Length 1.0 Diameter x 2.25 Length	mm inches
Volume:	MKS English	39.2 1.68	cm ³ inch ³
Mass:	MKS English	120 4.3	grams oz
Packaging:	Solid Epoxy Thermosetting	(High Temperature Cyclo)	
Finish	Nickel plated steel case		
Terminations:	Teflon wires #22 AWG (5)		

Environmental Characteristics

(at 25 degrees C unless otherwise specified)

Parameter	Conditions	Value	Units
Temperature Range	case temperature case temperature	-40 degrees to + 185 degrees -40 degrees to + 365 degrees	Celsius Fahrenheit
Shock:	MIL-STD-810 Method 516	40 g's	Proc IV
Altitude:	pins sealed against corona pins sealed against corona	-350 to + 16,700 -1,000 to +55,000	meters feet
Vibrations:	MIL-STD-810 Method 514	20 g's	Curve E
Thermal Shock	MIL-STD-810 Method 504	-40 deg C to + 185 deg C	Class 2

HAQ Series Performance Charts

HAQ Series Application Notes

The HAQ Series high voltage power supplies are driven by an input voltage of 1 to 15 VDC. The input current and output voltage as a function of input is shown in the above graphs. There are NO internal connections between the input and output pins. As can be seen from the above, the output voltage is approximately linear with respect to input except near the lower input voltage region. Here, the output drops off rapidly as the input voltage approaches zero with the absolute minimum input voltage needed for reliable starting being 2 VDC. As shown in Figure 1 below, the simple connection of a HAQ unit to a DC source of voltage will provide a high voltage stepped-up output. The input AC bypass capacitor C1 is optional and is utilized to prevent switching spikes from riding back on the input power lines. Values of 0.1 uF to 10 uF are commonly used.

Figure 1: Basic HAQ hookup schematic (side view of HAQ shown)

The output voltage of the HAQ unit may be regulated by incorporating a simple op-amp circuit and linear control device such as an NPN transistor. Here, the output voltage is sensed and compared against an external reference control voltage. For single supply operation, the circuit of Figure 2 may be used for positive output regulation. A high voltage divider is made up of R5 and R6 to divide down the output to a value comparable with the control voltage. The resistor R5 is value is determined by power considerations. A good rule of thumb is to be 10% of the full output load. Too high a value may lead to output drift problems due to operational amplifier input bias current drift. The resistor R5 must be rated for the voltage is limited to 300 VDC. Precision metal film resistors are more stable but also have limiting maximum voltages. It is possible to series several metal film resistors to build up the voltage rating of R5. Capacitor C4 likewise must be rated for the proper voltage. It serves to lower output ripple provide a feed-forward pole in the feedback loop for stability. Capacitor C5, the ground mirror capacitor serves as a lower end of the AC divider formed with C4 and prevents excessive voltage from being fed to the operational amplifier in the case of a shorted output.

© 2008 American High Voltage

PAGE 4

HAQ Series Application Notes (continued)

R6 is selected by calculating the resistance divider ration with R5, providing a 5 volt feedback at full output voltage. The input reference bypass capacitor C1 is used to remove any noise feeding to the non-inverting signal pin of the operational amplifier. For maximum temperature stability, R1 should be identical in value to R6.

© 2008 American High Voltage

www.ahv.com

ÞQ

Series

HAQ Series Application Notes (continued)

By varying the control voltage from 1 to 5V, the high voltage output of the HAQ power supply may be regulated. Line and load regulation as good as 0.01% are achievable depending upon physical layout and quality of feedback resistor. To lower the output ripple further, an resistor (carbon composition type) of a high value may be inserted in series with the HV output of the HAQ unit before it continues on in the circuit. A value of 100K Ohm will drop the output ripple to less than 0.2 Vpp. Here the 100 K Ohm resistor works as a filter in conjunction with C4. Higher ripple reduction is achievable with a capacitor added directly to the output pin and ground.

limited to less than 10% full load. C3 must be a high voltage capacitor, capable of working at the full output voltage. Diode D1 provides a return path in cast the output is suddenly shorted, protecting IC1 from huge positive spikes on the signal input. Resistors R2 and R3 form a simple divider, their values should be equal. The voltage drop in R1 should be such that at full output voltage the signal at the non-inverting input of IC1 should be exactly half the control voltage. R4 is a simple 10K Ohm limiter. The values of R2 and R3 should be twice that of R1 for good thermal stability. Typical values for a negative 1,000 volts negative output PMT power supply are as follows:

AQ:	HAQ – 15	R5:	10K
R1:	250K Ohm	C3:	2200 pF 3kV disc
R7:	100 Megohms (Slimox 102 – Ohmite)	C4:	0.1 uF 50 V ceramic
R2:	499K Ohm	IC1:	LM324
R3:	499K Ohm	Q1:	Power NPN such as D44H11

© 2008 American High Voltage

A

Series

© 2008 American High Voltage

www.ahv.com